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SOLUTION OF THE SINGULARLY PERTURBED STABILITY PROBLEM* 
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The singularly perturbed problem of the stability /l/ of solutions of a 
system of differential equations with derivatives multiplied by various 
powers of small parameters is considered. The effect of small parameters 
on the system dynamics is examined and the conditions under which the 
stability problem for the original system can be reduced to the analysis 
of a truncated system in special cases are determined. The general 
approach, based on separation of motions combined with methods of 
stability theory, enables the permissibility of idealizations /2/ in 
problems of mechanics to be examined (with a mathematically rigorous 
construction /3/ of simplified models as comparison systems for solving 
singularly perturbed problems) and enables estimates of the allowed 
parameter values to be obtained. The regular method used in this paper 
avoids a number of difficulties that arise in applied problems of 
mechanics, while generalizing existing results and producing a number of 
new results. The analysis focuses on problems of the dynamics of 
electromechanical systems in special critical cases. 

1. Focusing on applications to problems of the dynamics of electromechanical systems 
(EMS), we will formulate the problem for an EMS modelling a gyrostabilization system /4/ in 
the critical case /l/. We know 15, b/ that under appropriate assumptions the state of this 
EMS, characterized by a collection of n Lagrange and u Maxwell generalized coordinates, can 
be described by equations in general dynamic Maxwell-Lagrange (or Gaponov) form /7/. For 
the systems considered in this paper, the differential equations of perturbed motion can be 
represented in the form /8/ (we retain the notation of /8/, without the assumption of fast 
gyroscopes) 

-&q~'+ (A+g)q~'= Qsa’+Qm+ QM” 

$ -%s’ + %c’ = QE’ + QEM + QE”~ 
%i 
7=qM 

m = II qn qs liTI QM’ = - eqMM, QME = -4uqE.r Ana = II& A IIT 
QEM = BEqna’,’ BE = II 0, BII, QE' = -_(w, + %E’) 

(1.1) 

Here qM is the n-dimensional vector of mechanical generalized (Lagrange) coordinates, 
q, is the Z-dimensional vector of mechanical control coordinates, qE is the u-dimensional 
vector of electrical generalized (Maxwell) coordinates, e=e(qM) and b = A (qna) are 
(n X n) symmetric matrices of the positive definite quadratic form representing the kinetic 
energy of the mechanical part of the system and the positive semidefinite quadratic form in 
the expansion of the dissipative function of viscous friction forces, respectively, g=g(qm) 
is the skew-symmetric matrix of gyroscopic coefficients, L = II L,, II and H = R (qr') are 
(u X u) symmetric matrices of positive definite quadratic forms representing the electro- 
magnetic energy of the system and the dissipative current function, respectively, L,, are 
the coefficients of selfinduction and mutual induction of the windings in electrical 
circuits, e = e(qM)is the (nXn) matrix of potential and non-potential forces, which depend 
on generalized coordinates, QM~ and QEM are the mechanical generalized forces of electro- 
magnetic origin (ponderomotive forces) and the electrical generalized forces of mechanical 
origin (counter-emf), A =I1 Akf 6%) 11 is an (ZXu) matrix, B=JIB,j(L,,)Ijis a (u x 2) matrix, 
Qs' is the vector of electrical generalized forces corresponding to electrical generalized 
coordinates and QM" and Qs" are sets of non-linear terms which depend on qM, qM*, qE’. 
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System (1.1) is of order (2n -i-U). A simplified model is often used in applications 
for analysing the dynamic properties of such systems (including their stability). In 
particular, assuming that the electrical circuits of servo-systems have a low inertia and 
treating the corresponding terms in the differential equations as small terms, we will ignore 
then and change to a truncated (idealized) model with inertialess electrical circuits /4, 91 
of the form 

-$- aqM’+ (b + g)qM* = QM'+ QYE + QM" 

RYE’ = QE’ $ &“t 
dqM 
~=qM’ 

W2) 

The order of this system is Zn, i.e., lower than the order of the original system (1.11. 
We therefore need to rigorously justify the transformation to the truncated model in an 
infinite time interval (especially in stability problems). Note that the solution of such 
problems by various methods has been considered in many publications, including solutions for 
EMS of various types (see, e.g., /lo, ll/), but the construction of model (1.2) as a comparison 
system for (1.1) is not considered in a rigorous framework in the literature. No conditions 
for the admissibility of such a system have been derived either. 

A detailed analysis shows that these systems have singularities of the ssme kind as 
gyroscopic systems /S, 12/. This complicates the direct application of the results of 
singular perturbation theory. The EMS correspond to a class of singlarly perturbed systems 
/13/ whose differential equations can be represented as equations with the derivatives multi- 
plied by various powers of small parameters. The motions in system (1.1) under the above 
assumptions are divided into three types of components with different time scales; the 
truncated sytsem (1.2) is not a limiting model for (1.1). yet these problems can be very 
efficiently solved by the methods of Lyapunov stability theory /2, 141. 

2. In view of the above, we consider the stability problem as a singularly perturbed 
problem for systems of this type. Assume that the differential equations have been reduced 
to the form 

p%xJdt = K (t, u, x) (i = 1, 2, 3), a, = 1, a, = 2, a8 = 0 

where p is a small positive parameter. 

(2.1) 

Assuming that in general the systems have a manifold of stationary states, we put 

xi = x,, XQ = /Ixa, z/1=, K,=Pj(~)x+Xi(t,~,z,x) (i=1,2) 

K, = \I P, (IL) x +- X, (t, p, 2, x), Z (t, p, 2, @/IT, x = II xi, ~2, x, liT 

where Xi are ni-dimensional vectors of the main variables (n = n, f n, + n3) and z is the 
m-dimensional vector of critical /l/ variables. We assume that all functions in (2.1) are 
holomorphic in all the variables s, x lin some domain), Xi and Z are non-linear vector 
functions of t, p., z and x whose expansion does not contain terms of lower than the second 
degree with coefficients which depend on t and )I that vanish for X = 0 and any t, !I and 2, 
and KS (t,p = 0,2,x\ does not contain terms with the fast variables xI1. 

System (2.1) is of the order of (n + m) Consider the following problems: find the 
conditions when the solution of the problem of stability for system (2.1) can be reduced to 
the analysis of the stability of the truncated model; establish if the solution of the 
complete problem is close to the solution of the truncated system on an infinite time interval; 
find a technique for constructing an admissible truncated model for which reduction is valid 
in a dynamic setting. To solve these problem, we extend the method applied in 18, 151 for 
special cases of systems of the form (2.11. Following f2/, we construct simplified models of 
various levels, introducing various approximate systems in accordance with our procedure. 

As an approximate system for (2.1), we use the system linearized in u (as is usually 
done in stability theory): 

dx1 
r” -&- I pl*x + x,*, 0 = p,*x + x,* 

_t?$ = p,*x + x8*, $ = ZQ 

(2.2) 

This is a system of order (n-t-m - nz), and the asterisk denotes the retained terms with 
u of not higher than first degree. 

Then consider a system of zeroth order in u as an approximate system for (2.1): 

0 = PiX + X, (i = ‘I, z)% $ i= P,x + x,, g =I z 

pi = Pi (p = O), x* = xi (t, I” = 0, I, x) (f = 2, 2. 3) 

(2.3) 



2 = 2 (t, (a = 0, 2, x) 

This is the degenerate system of order (f13 +m) traditionally used in perturbation 
theory. 

3. We solve the singularly perturbed problem of the stability of (2.1). (2.2). Here 
we have the critical case /l/: the characteristic equation of the first-approximation system 
for (2.1) has m zero roots. The other roots are determined from the equation 

r,(h,p)= l.~(~)~-~(~)l=O (3.1) 

and D (h, p) = fi (A, a) -I- p% (II, p) = 0, where f;(h,p) is a polynomial in h which is obtained 
from D (A, CL) when only terms linearized in p are retained in each element of the determi- 
nant. 

For system (2.21, the characterstic equation has the form .hmL),(h,p)=O, where D*(h,p)= 

fl (h PI- The equation 

& (A, P) = 0 (3.2) 
is called the truncated equation, and the equations 

are called auxiliary equations. 
The methods of stability theory /l, 21 lead to the following proposition. 

Theorem 1. If for IP(O)I+O, IP22(0)j#0 Eqs.(3.2) and (3.4) satisfy the Hurwitz con- 
ditions, then for sufficiently small p the property of stability (asymptotic or non-asymptotic) 
of the zero solution of system (2.2) implies the corresponding property of stability of the 
zero solution of system (2.1). 

For m>O, any solution of system (2.1) of the form s =C, x =O (i/CII is sufficiently 
small) is also stable. The full system (2.1) has the holomorphic integral 
A; the truncated system (2.2) has an integral of the form 

s +@ (t, p, s, x)== 
z -t-cp(t, p, z, xl, xJ=B, where Q, 

and Cp are holomorphic non-linear vector functions annihilating for x = 0 and x, = 0, x8 = 0 
respectively, whose expansions contain no terms of lower than second degree in the variables 
z, x; Aand B are arbitrary constant vectors, and 

where CD, and 'po are identical on the solutions of the degenerate system. 

Proof, Without going into details, we will highlight the main points of the proof (the 
proof is similar to that in /S/j. For sufficiently small !L, under the condition of Theorem 1, 
the truncated system (2.2) can be represented in the form 

(3.5) 

This is a Lyapunov system /l/. 
Denote by h = h(p) the roots of Eq.13.1) and by h, = he (p) the roots of Eq.(3.2). We 

can show that for lP(O) j+=O, )Pa,(0)l#O, n, roots h and h, tend as u-t 0 to the values 
1, of the roots of the degenerate equation 

D, (a) = D (a, 0) = 0 (3.6) 
and are equal to these roots in the limit; n, roots a and a, may be represented in the 
form a(&= fi @)/p and &(p) = & (&'ip respectively, where p(p) and 
P-+0 to the values & 

B* Q.4 tend as 

limit. 
of the roots of Eq.(3.3) and are equal to these roots in the 

Estimating the errors Alh = h(p)- h,, AA, = h, (p) --a0 for the roots of the first 
group and Af! = B (~1 - PO, Ab = fJ* (14 - PO for the roots of the second group, we can show 
that for sufficiently small p,(n, f ns) roots of Eq.(3.1) have negative real parts if the 
truncated Eq.(3.2) satisfies the Hurwitz conditions. The remaining no roots of Eq.(3.1) 
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for sufficiently Small v have negative real parts if Eq.(3.4) satisfies the Burwits conditions, 
Hence we obtain that under the given conditions our systems for sufficiently small p 

satisfy all the conditions of the corresponding Lyapunov theorems /I/, which proves Theorem 1, 

Remarks. 3.1. This result defines the conditions when the singularly perturbed probfem 
of the stability of systems (2.11, (2.21 has a solution fincluding the critical case m>o). 
These conditions, in general, can be rewritten in a different form, noting that for suf- 
ficiently small U all the roots of the truncated Eq.(3.2) lie in the left halfplane if the 
equations Do(h)= 0 and D, (IN = 0 satisfy the Hurwitz conditions. 

3.2. A similar result has been obtained for the singularly perturbed problem (2.1) and 
(2.3). We have determined the conditions when the truncated model corresponding to the 
limiting system is well posed. 

3.3. The proposed method, combining the methods of stability theory and perturbation 
theory, can also be used to estimate the values jr for which the reduction to the truncated 
model is permissible. To this end, we need to consider the two subsystems into which the 
original perturbed system splits (in our setting): the subsystem corresponding to slow 
variables and the subsystem corresponding to fast variables. Following Chetayev /2/ and 
imposing conditions that ensure the stability of the solutions of the complete system (2.1) 
when the solutions of each of these subsystems are stable, we can obtain relationships for 
the allowed values of p. Both the first and the second Lyapunov method may be used. 

4. The problem of the stability of these systems is directly selated to the problem of 
the closeness of the solutions of the complete and the truncated systems. The latter problem, 
as we known /2, 14/, is closely linked with Lyapunov theory and methods. Let us determine 
under what conditions the corresponding solutions of systems (2.1) and (2.2) are close in an 
infinite time interval. Denote by x = x(&p), z = z (t, p) the solution of system (2.1) with 
the initial conditions x, = x (to, Fbf, z. = z (to, pi.) and by x* = X* (t, p)% z* = z* (t,,&) the 
solution of tbe truncated system (2.2) with'the initial conditions % * = x,* (to, p) (i = 1, 3), 
zo* = z* (&, ph and s* =f, (t, p, s*, x1*, x8*), where xa = f,(t, p, Z,xz,Xg) is the solution of the 
algebraic equation in system f2.2), 0 = P,*x -j-X,*, for the variable x~. 

The methods of stability theory prove the following theorem. 

Theorem 2. If for lP(O)I+O Eqs.(3.3), (3.4) and (3.6) satisfy the Hurwitz conditions, 
then for sufficiently small p for given numbers e>OI&>O,Y>o (where 8 and y may be 
arbitrarily small) there exists p* such that the perturbed motion for O( p< &t* satisfies 
for all t > t, $ y the inequalities iI x - x*]I < &,I/ Z--Z* I[ < 6, if xi,,= x+0* (i == i, 3). za = So*, 

It xao- X80* II c 6. 

Without giving the detailed proof, we merely note that it involves investigating the 
solutions of systems 12.1) and (2.2) for sufficiently small M, for which Xi0 =%,*(i = 1,3), 
so = zo*. Following Chetayev, we introduce the variables a= s - z*, bi= xi--xi* (i = 1,2,3) 
and consider the differential equations for bi that correspond to non-critical variables. 
These are obtained for Eqs.(2.1) and (2.2) and their integrals 

p%b&ft = Bi (t, II, b) (i = 1, 2), db& =i B, (6, j+ b) G.9) 

The behaviour of the variables a, b is investigated in an infinite time interval, noting 
that a (to) = 0, bi (tOf = 0 (i = 1, 3),11 b, (t,)jl( 6, 6 > 0 is a given number. 

Analysing system (4.1) and the structure of the integrals, we can show that under the 
given conditions these solutions have the following property: for given numbers 8, 69 Y (8 
and y may be arbitrarily small), there exists IL* >o, such that for O<p<p* for al1 

t2-t,-l-y we have /la/< a, II b/j< E with the given initial values. This proves the 
proposition. 

Remarks. 4.1, A similar problem has been considered for system (2.1) I f2.3). 
4.2. Cur analysis gives the conditions when the truncated model is permissible (in the 

problem of stability, in the problem of the dynamic characteristics of the transients). These 
studies are not only of theoretical interest (they generalize the results of singular per- 
turbation theory to this critical case and this simplified System): they are also of interest 
in applications to problems of mechanics iin particular, to problems of EMS dynamics). 

5. As an application of our results, let us consider the problem of stability for the 
EMS described in Sect.1 (in the critical case of m zero roots) as a singularly perturbed 
problem. We will construct the truncated model (as a comparison system) and determine the 
conditions when the reduction to the truncated model is permissible. 

We denote as (5.1) the initial equations of motion represented in the form (1.1) (they 
are not written out in full here). Take 
a<, 66, gi (i = 1, 2) 

a = II a,, aalIT, b = II 4, bIlp’,bg g= II& &IT, e m 0, where 
are appropriately dimensioned submatrices e1. 19 1 are (nX?z),m=n-1, 

m > 1). In accordance with the proposed approach, treating the EMS as a singularly per- 
turbed system, we reduce Eqs.lS.1) to the form (2.X). Assuming fast transients in the 
electric circuits of the servo-systems and putting 
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where p>o is a small parameter, we represent the equations in new variables in the form 

P~=-~f6+~~x,-tA*x*+X,~Ec,z~x) (5.2) 

a* P &=- RXI+eX, -iii, + p*B+x, $ X*(II,s* x) 

dxll=dx 
dr 1 1% g = Z (p,z*xlrxg) 

In accordance with the previous results, we obtain that, for EMS with low-inertia 
electric circuits, two types of simplified models can be constructed, one corresponding to a 
truncated system linearized by u (of the form (2.2)) and another corresponding to a liniting 
system in )A (of the form (2.3). Thus, 

~aq~'+@+g)q~'=Q~~-t QM" (5.3) 

Rqs'= Qr'f $&~=q,- 

(6 + .&qM*= Qras+&' (5.4) 

&E-=5 QE'+ &"n .+Eql* 

of orders 2n and n, respectively. These approximate systems may be used as comparison 
systems (simplified models) for the original system of order (Zn + 4 under appropriate 
conditions. In particular, it follows from our results that the transition to system (5.3) 
in the stability problem is permissible if p is sufficiently small (the time constants of 
the electric circuits are sufficiently small) and the equations 

~.Lh-+-RO+W)=O, ~a”h+bo+g”~=O 

bl” + g,@ 1 0 __-_--d---..-f _-___-- 
(bp” + g2*) h : -A” 

_^ ___) _-_-...;_ C_r_-- 
iI9 ; 0 !R”+Qo 

satisfy the Hurwitz conditions. 
The stability property is then preserved and the solution 

close to the solution of the approximate system in an infinite 
of the complete 
time interval. 

(5.5) 

system is 

Remarks.5.1 Systems(5.3) (the linearized model) is identical with the well-known approxi- 
mate model used for such EMS in 14, 91. System (5.41, constructed here as a model that is 
limited (in u), is a new approximate model, which is not traditional for problems of EMS 
dynamics and is fundamentally different from the known numerical models /9/ (we do not make 
any assumptions about the properties of the gyroscopes and the matrix g). 

Ez0mpZe. Consider a uniaxial gyrostabilization system /4, %/ modelled as an EMS with 
absolutely rigid elements, in which the stabilizing motor is a DC motor with independent 
excitation and with armature current control. We allow for the finite transient time in the 
electric circuits of the servo-systeas. 

U = 
The equations of perturbed motion may be represented 1'91 in the form (l.l), where n=2, 

3: 

_@" + b$‘- Ha’ = . . I, la” i_ bla’ + fib’ = -g&n + . . 

&rjLj.+RI,ir=Ek+... (k== 1, 2,3) 

8% = --ofi,E, = --4&i,+ g&a',E,== 0 

(5.6) 

In accordance with the previous results, 
(Lrj = hkJ*C. k. j = 1, 2, 3; KM = &f&P, &‘E = 

for systems with low-inertia electric circuits 
.%*P) we may represent (5.6) as a singularly perturbed 

system of the form (5.2) and construct two types of simplified models. The model, linearized 
by IA, which is the old variables corresponds to a system of equations of the fourth order 



480 

.Xfi.’ + b#’ - Ha‘ = . . .; la” + b,a’ $ HP’ = -gMi2 t_ I (5.7) 

R,tl = -a$ + ., R,i, = -Qi, $- . . ., R,i, = 

corresponds to the well-known model /4/. The transition to (5.7) from the original system 
(5.6) of seventh order is permissible for sufficiently small u, if in accordance with the 
conditions of Sect.5 b,#O (or ,b,#O). ff~g&Z>O, and the equation ILX+R+Q)=O 
satisfies the Hurwitz conditions. Then the-truncated model (5.7) is permissible in our 
sense if PQ P*. The estimate CL* obtained here in line with Remark 3.3 following the ideas 
of /2/ and using relationships of the form sup,IReA.h,I~iinf,IReAh,,I defines the region of 
allowed parameter values. In a special case (b,= 0, Lls* #O, all other Lrj* = 0 (k fi)), we 

obtain 

gm <ini 
R&&H A&H= 
Jpo- 

I LaaRa - Lz,Rs j JRa 
’ APobn ’ GaLLa - L%?) g, 

Note that a simpler model is also valid in this case: it corresponds to the P-limited 
system 

b,f,‘ - Ha' = ._,, b,a’ + Hfi’ = -gg,i, + . 

Rli, x -.ob f .,., Rztl = 4X1 f . . . . R& = . . 

The transition to this second-order model is permissible when the inertia of 
circuits in the ENS is sufficiently low and the corresponding conditions, similar 
are satisfied. 
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